Extensions of TOPSIS for large scale multi-objective non-linear programming problems with block angular structure
نویسندگان
چکیده
This paper focuses on multi-objective large-scale non-linear programming (MOLSNLP) problems with block angular structure. We extend the technique for order preference by similarity ideal solution (TOPSIS) to solve them. Compromise (TOPSIS) control minimizes the measure of distance, provided that the closest solution should have the shortest distance from the positive ideal solution (PIS) as well as the longest distance from the negative ideal solution (NIS). As the measure of ‘‘closeness’’ LP-metric is used. Thus, we reduce a q-dimensional objective space to a two-dimensional space by a firstorder compromise procedure. The concept of a membership function of fuzzy set theory is used to represent the satisfaction level for both criteria. Moreover, we derive a single objective large-scale non-linear programming (LSNLP) problem using the max–min operator for the second-order compromise operation. Finally, a numerical illustrative example is given to clarify the main results developed in this paper. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملA Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment
This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...
متن کاملA Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...
متن کاملA new decision-making model for solving multi-objective large- scale programming problems with a block angular structure
This paper presents a model based on a novel compromised solution method to solve the multiobjective large-scale nonlinear programming (MOLSNLP) problems with block angular structure. In this method, an aggregating function that is developed from TOPSIS and VIKOR is proposed based on the particular measure of ‘‘closeness” to the ‘‘ideal” solution. The decomposition algorithm is utilized to redu...
متن کاملAn Interactive Decomposition Algorithm for Two-Level Large Scale Linear Multiobjective Optimization Problems with Stochastic Parameters Using TOPSIS Method
This paper extended TOPSIS (Technique for Order Preference by Similarity Ideal Solution) method for solving Two-Level Large Scale Linear Multiobjective Optimization Problems with Stochastic Parameters in the righthand side of the constraints (TL-LSLMOP-SP)rhs of block angular structure. In order to obtain a compromise ( satisfactory) solution to the (TL-LSLMOP-SP)rhs of block angular structure ...
متن کامل